

Available online at www.sciencedirect.com

Journal of Nuclear Materials 336 (2005) 177-184

www.elsevier.com/locate/jnucmat

Thermodynamic stabilities of SrCeO₃ and Sr₂CeO₄ using the fluoride EMF technique

R. Pankajavalli, K. Ananthasivan, S. Anthonysamy, P.R. Vasudeva Rao *

Fuel Chemistry Division, Chemical Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, India Received 3 June 2004; accepted 17 September 2004

Abstract

The standard Gibbs energies of formation of SrCeO₃ and Sr₂CeO₄ were measured by the EMF method using CaF₂ as a solid electrolyte. Three fluoride galvanic cells (I–III) were constructed in order to determine $\Delta_f G^\circ$ of SrCeO₃. The $\Delta_f G^\circ$ of Sr₂CeO₄ was determined using galvanic cell (IV). The cells used were

Pt, $O_2(g)$ (1 bar), SrO(s), $SrF_2(s)|CaF_2|SrF_2(s)$, $CeO_2(s)$, $SrCeO_3(s)$, $O_2(g)$ (1 bar), Pt (I)

Pt, $O_2(g)$ (1 bar), SrO(s), $SrF_2(s)|SrF_2|SrF_2(s)$, $CeO_2(s)$, $SrCeO_3(s)$, $O_2(g)$ (1 bar), Pt (II)

Pt, $O_2(g)$ (1 bar), $SrF_2(s)$, $CeO_2(s)$, $SrCeO_3(s)|CaF_2|CaF_2(s)$, CaO(s), O_2 (1 bar), Pt (III)

Pt, $O_2(g)$ (1 bar), SrO(s), $SrF_2(s)|CaF_2|SrF_2(s)$, $SrCeO_3(s)$, $Sr_2CeO_4(s)$, O_2 (1 bar), Pt (IV)

The standard Gibbs energy of formation of $SrCeO_3$, derived from the mean of the EMFs of the above galvanic cells (I to III), is given by the following expression:

 $\Delta_{\rm f} G^{\circ}({\rm SrCeO_3}) \pm 17 \ ({\rm kJ\,mol^{-1}}) = -1703 + 0.327T \ ({\rm K}) \ (788 - 1142 \, {\rm K})$

By combining this expression with the EMF measured using Cell IV, the following expression was obtained for the temperature dependence of the standard Gibbs energy of formation of Sr_2CeO_4

 $\Delta_{\rm f} G^{\circ}({\rm Sr_2CeO_4}) \pm 21 (\rm kJ\,mol^{-1}) = -2307 + 0.4400\,T~(\rm K)(805-1066\,\rm K)$

© 2004 Elsevier B.V. All rights reserved.

^{*} Corresponding author. Tel.: +91 4114 280229/40229; fax: +91 4114 280065. *E-mail address:* vasu@igcar.ernet.in (P.R. Vasudeva Rao).

^{0022-3115/\$ -} see front matter @ 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.jnucmat.2004.09.012

1. Introduction

The Prototype Fast Breeder Reactor (PFBR) in India would use a mixed oxide of uranium and plutonium (MOX, containing PuO_2 fractions of 0.21 and 0.28) as fuel [1,2]. The complex chemical equilibria existing in the fuel during reactor operation have been studied in great detail in the past [3]. However, further investigations are required in order to augment the existing data. These would be useful for understanding the complex chemistry of the MOX fuel during its life in the reactor. Ceria is often considered to be an inactive substitute for plutonia [4]. Thus, a study of the ternary oxides bearing cerium could serve as a forerunner for the experiments on plutonium bearing fuel materials. Hence an experimental programme is underway at our Centre for the determination of stabilities of various ceramic oxides bearing plutonium. In this study the stabilities of two ternary oxides of cerium with strontium were examined.

There are two ternary oxides namely SrCeO₃ and Sr₂CeO₄ reported in the literature in the pseudo-binary system SrO-CeO₂ [5]. A tentative partial isothermal section of the system Sr-Ce-O, at 1073 K is given in Fig. 1. Saha et al. [6] reported the enthalpy increment measurements of SrCeO₃ using a high-temperature drop calorimetry technique. Gopalan and Virkar [7] measured the thermodynamic stability of SrCeO₃ through EMF measurements by constructing galvanic cells with a molten salt electrolyte as well as CaF2 solid electrolyte. Cordfunke et al. [8] reported data on the heat capacity and standard molar enthalpy of formation $(\Delta_{\rm f} H^{\circ}_{298})$ of SrCeO₃ using solution calorimetry. Yamanaka et al. [9] have determined the heat capacity and thermal expansion of SrCeO₃ using differential scanning calorimetry and dilatometry respectively. Ali et al. [10] determined the standard molar enthalpy of formation of Sr₂CeO₄ using an isoperibol calorimeter. Although sev-

Fig. 1. Partial isothermal section of the Sr-Ce-O phase diagram at 1073 K.

eral thermal properties have been studied, no experimental investigations have been carried out to measure the standard Gibbs energy of formation of these ternary compounds. The thermodynamic characterization of the system Sr–Ce–O using yttria stabilized zirconia or yttria doped thoria electrolytes would be difficult owing to the extremely low oxygen potentials involved. However, fluoride electrolytes can be successfully employed to measure the low oxygen potentials in the system Sr– Ce–O. Hence, the present study was undertaken with a view to determine $\Delta_{\rm f} G^{\circ}$ of SrCeO₃ and Sr₂CeO₄ using the fluoride EMF technique.

2. Experimental

2.1. Materials

Nuclear grade cerium (III) nitrate hexahydrate, CeO₂ (purity > 99.99%, Indian Rare Earths Ltd., Mumbai) and strontium nitrate (purity > 99.9%, Fluka Germany) were used. In addition, SrCO₃ and CaCO₃ (purity > 99.9%, IDPL, India) were used for the solid-state synthesis of SrO and CaO, respectively. Polycrystalline SrF₂ and CaF₂ (purity > 99.9%, Aldrich, USA) were used for making the SrF₂ electrolyte as well as for use as electrode materials. Other chemicals such as nitric acid (Reachem Laboratory Chemicals Pvt. Ltd., Chennai) and citric acid (Fischer Inorganics and Aromatics Ltd., Chennai) were of reagent grade.

2.2. Sample preparation

The ternary compounds SrCeO₃ and Sr₂CeO₄ were synthesized by the gel-combustion procedure [11]. In this method, a saturated aqueous solution containing desired amounts of strontium nitrate, cerium nitrate hexahydrate and citric acid was heated on a hot plate. This solution progressively thickened yielding a dry gel, which finally got ignited through a self-sustaining combustion reaction. The product obtained in this reaction was a yellow oxide powder. This product was calcined in air at 923 K for 4h in order to remove the residual carbon present in it. The final product was compacted into cylindrical pellets of 10mm diameter by applying a pressure of 100 MPa in a hydraulic press. These pellets were then sintered at 1373 K for 12h in air. The phase composition of the ternary compounds synthesized as mentioned above was ascertained by powder X-ray diffraction (XRD) analysis (Philips X-ray diffractometer, The Netherlands) within the 5 mass percent limit of detection of the impurity phases using $CuK\alpha$ radiation. The XRD pattern pertaining to SrCeO₃ synthesized using the above method is given in Fig. 2. The XRD data of this perovskite phase corresponds to an orthorhombic unit cell with lattice parameters b = 857.6(6)

Fig. 2. XRD pattern of SrCeO₃.

pm, a = 614.6(3) pm and c = 600.8(4) pm and space group – Pnma (62). The XRD pattern of Sr₂CeO₄ showed the presence of traces of SrCeO₃. This phase mixture was used for the preparation of the test electrode, Sr₂CeO₄/SrCeO₃/SrF₂.

For the synthesis of polycrystalline SrF_2 electrolyte, well-dried SrF_2 powder was compacted into cylindrical pellets of 15mm diameter and 3–4mm thickness at a pressure of 300 MPa in a hydraulic press. These pellets were loaded in a zirconia boat and sintered at 1693 K for 2h under controlled flow of the argon gas in a Pt wire wound furnace. A slow heating rate of 5K min⁻¹ was employed in order to facilitate recrystallization. Subsequently, the temperature was reduced to 1523 K (cooling rate 3K min⁻¹) and maintained at that tempertion of the respective carbonates and higher oxides like SrO₂.

2.3. EMF measurements

An open cell-stacked pellet assembly as described elsewhere [12] was employed for the EMF measurement. In this study, single crystal CaF2 and polycrystalline SrF₂ were used as the electrolytes for the direct measurement of high-temperature thermodynamic properties of compounds of a highly electropositive metal like cerium. Two separate three-phase mixtures, SrCeO₃(s)/CeO₂(s)/ $SrF_2(s)$ and $Sr_2CeO_4(s)/SrCeO_3(s)/SrF_2(s)$ made into cylindrical pellets were used as test electrodes. Similarly, compacts of two separate two-phase mixtures SrO(s)/ $SrF_2(s)$ and $CaO(s)/CaF_2(s)$ prepared without exposing them to air were used as the reference electrodes. Pure O_2 at 1 bar was used as the cover gas after passing through suitable drying agents. All temperature measurements were made using a pre-calibrated Type-S thermocouple whose hot junction was located in the proximity of the galvanic cell, which in turn was placed in the uniform temperature zone to minimize thermoelectric contributions. The attainment of equilibrium during the EMF measurements was verified not only by thermal cycling and micro-polarization but also by marginal variation in the ratio of the co-existing phases. All other experimental details are the same as described elsewhere [12,13]. The following galvanic cells were used and the EMF of these cells was measured as a function of temperature.

Pt, $O_2(g)$	(1 bar), SrO(s),	$SrF_2(s) CaF_2 SrF_2(s),$	$CeO_2(s)$, $SrCeO_3(s)$,	$O_2(g)$ (1 bar), Pt	(I)
--------------	--------------------	----------------------------	-----------------------------	----------------------	-----

Pt,
$$O_2(g)$$
 (1 bar), $SrO(s)$, $SrF_2(s)|SrF_2|SrF_2(s)$, $CeO_2(s)$, $SrCeO_3(s)$, $O_2(g)$ (1 bar), Pt (II)

Pt,
$$O_2(g)$$
 (1 bar), $SrF_2(s)$, $CeO_2(s)$, $SrCeO_3(s)|CaF_2|CaF_2(s)$, $CaO(s)$, O_2 (1 bar), Pt (III)

Pt, $O_2(g)$ (1 bar), SrO(s), $SrF_2(s)|CaF_2|SrF_2(s)$, $SrCeO_3(s)$, $Sr_2CeO_4(s)$, O_2 (1 bar), Pt (IV)

ature for 12h in order to minimize vaporization and pore formation. The density of these pellets was measured by liquid immersion technique with dibutyl phthalate as the immersion liquid. The average density of these electrolyte discs was found to be 3.918 Mgm^{-3} ($\approx 93\%$ theoretical density (TD)).

SrO and CaO were prepared by decomposition of $SrCO_3$ and $CaCO_3$ powders, respectively. The oxide powders were then compacted into cylindrical pellets and heated at 1473 K under flowing of purified oxygen for 5h. The products thus obtained were cooled in a stream of high-purity helium down to a temperature of 1073 K and quenched in order to prevent the forma-

3. Results

The EMF data obtained using the cells (I)–(IV) are given in Tables 1–4. These results are represented by the following least-squares expressions. The ranges of temperatures over which these expressions are valid are indicated within parentheses.

$$(E_{\rm I} \pm 1.0) \ (\rm mV) = 126.72 - 0.11101T \ (\rm K), (837-976 \, \rm K)$$
(1)

$$(E_{\rm II} \pm 0.8) \ (\rm mV) = 79.34 - 0.06364T \ (\rm K), (788-954 \, \rm K)$$
(2)

Run	T (K)	EMF (mV)	Run	T (K)	EMF (mV)	Run	T (K)	EMF (mV)
Al	872.9	28.8	B1	882.9	27.4	C1	836.5	32.9
A2	890.9	27.5	B2	896.2	28.9	C2	858.0	32.0
A3	907.0	26.7	B3	896.7	26.8	C3	874.5	31.1
A4	913.2	25.5	B4	911.7	26.5	C4	884.2	27.4
A5	923.2	24.9	B5	928.5	23.4	C5	891.4	28.6
A6	940.0	22.6	B 6	930.0	24.2	C6	907.2	24.9
A7	946.5	22.2	B 7	946.2	22.1	C7	909.7	25.8
A8	956.2	20.7	B 8	947.0	23.3	C8	931.7	23.5
A9	968.5	19.4	B9	961.5	18.9	C9	958.2	17.7
A10	973.2	17.9	B10	963.5	18.8	C10	975.7	19.5

Table 1 Temperature dependence of EMF of cell I

Table 2

Temperature dependence of EMF of cell II

Run	<i>T</i> (K)	EMF (mV)	Run	<i>T</i> (K)	EMF (mV)		
Al	879.2	23.7	B1	789.4	29.7		
A2	895.2	22.5	B2	805.0	29.0		
A3	912.5	20.9	B3	821.2	26.5		
A4	930.2	19.8	B4	837.2	24.5		
A5	953.5	19.3	B5	866.0	24.6		

Table 3 Temperature dependence of EMF of cell III

Run	<i>T</i> (K)	EMF (mV)	Run	<i>T</i> (K)	EMF (mV)
Al	1006.2	120.0	B1	972.2	120.8
A2	1023.0	119.7	B2	1017.5	119.5
A3	1040.2	118.3	B3	1018.7	119.7
A4	1050.2	118.8	B 4	1035.4	118.5
A5	1057.0	118.2	B5	1040.7	118.7
A6	1068.0	118.5	B6	1050.5	118.3
A7	1075.0	117.3	B 7	1064.5	117.2
A8	1086.0	117.8	B 8	1076.7	117.2
A9	1093.2	116.4	B9	1087.7	116.9
A10	1103.0	116.6	B10	1101.0	117.1
A11	1110.2	116.8	B11	1106.2	116.3
A12	1120.7	116.1	B12	1142.0	116.5

Table 4 Temperature dependence of EMF of cell IV

Temperature	Temperature dependence of ENT of centry						
Run	<i>T</i> (K)	EMF (mV)	Run	<i>T</i> (K)	EMF (mV)		
Al	804.5	14.4	B1	857.7	13.3		
A2	847.5	14.2	B2	874.2	12.8		
A3	869.7	13.8	B3	891.5	12.1		
A4	893.0	12.1	B 4	908.7	10.8		
A5	972.7	6.5	B5	925.7	9.1		
A6	986.7	7.0	B6	944.2	6.9		
A7	1018.7	3.0	B 7	1006.5	6.0		
A8	1042.5	1.5	B 8	1024.4	4.2		
A9	1066.0	2.1	B9	1040.5	3.6		
			B10	1059.2	3.2		

$$(E_{\rm III} \pm 0.4) \ ({\rm mV}) = 150.65 - 0.0307T \ ({\rm K}),$$

(972–1142 K) (3)

$$\begin{aligned} (E_{\rm IV}\pm 1.0)~({\rm mV}) &= 60.24 - 0.05478T~({\rm K}), \\ (805{-}1066\,{\rm K}) \eqno(4) \end{aligned}$$

The simple relation, namely Nernst equation, between the standard Gibbs energy change, $\Delta_r G^\circ$, corresponding to the cell reaction and the cell EMF is given by $\Delta_r G^\circ = -nFE$. Since EMF is an electrical quantity, that can be measured with high accuracy and precision, the scatter in the experimental data is rather less. For an uncertainty of $\pm 1 \text{ mV}$ and n = 2, the corresponding scatter in $\Delta_r G^\circ$ is around 200 J. from Eq. (9). Even though it appears that the percentage difference between these two values is about 15%, the absolute difference is relatively small. The entropy change, $\Delta_r S^{\circ}$, is about -21 and $-12 \text{ J K}^{-1} \text{ mol}^{-1}$ derived from Eqs. (8) and (9) for the solid–solid reaction between equal moles of SrO and CeO₂. These values are reasonable owing to the highly disordered structure of SrCeO₃. The equilibrium temperature above which SrO, CeO₂ and SrCeO₃ coexist is given by the Eqs. (8) and (9). These values are 1151 K (for Eq. (8)) and 1247 K (for Eq. (9)). Above this temperature SrCeO₃ would decompose into SrO and CeO₂.

Gopalan and Virkar [7] measured the EMF of the galvanic cell,

$$CO_2, O_2/SrCO_3 + SrF_2 + Pt|SrF_2|SrCeO_3 + CeO_2 + SrF_2 + Pt/CO_2, O_2$$

$$(V)$$

4. Discussion

4.1. Gibbs energy data on SrCeO₃ from Cells (I) and (II)

The two half-cell reactions of cells (I) and (II) are represented by

$$SrO(s) + 2F^{-} \Rightarrow SrF_{2}(s) + \frac{1}{2}O_{2}(g) + 2e^{-}$$
(5)

$$SrF_{2}(s) + CeO_{2}(s) + \frac{1}{2}O_{2}(g) + 2e^{-} \Rightarrow SrCeO_{3}(s) + 2F^{-}$$
(6)

The over-all cell reaction (with n = 2) could be represented by

$$SrO(s) + CeO_2(s) \Rightarrow SrCeO_3(s)$$
 (7)

Thus, the standard Gibbs energy change for the reaction (7), $\Delta_{\rm r} G^{\circ}$ (7) would directly yield the standard Gibbs energy of formation of one mole of SrCeO₃ from the binary oxides SrO and CeO₂. In turn, the $\Delta_{\rm r} G^{\circ}$ of SrCeO₃ was thus derived from Eqs. (1) and (2) to be as follows.

$$\Delta_{\rm r} G^{\circ}({\rm SrCeO_3}) \pm 0.2({\rm kJ\,mol^{-1}})$$

= -24.5 + 0.0213T (K) (837–976 K) (8)

$$\Delta_{\rm r} G^{\circ}({\rm SrCeO}_3) \pm 0.3 (\rm kJ\,mol^{-1})$$

= -15.3 + 0.0123T (K) (788-954 K) (9)

The purpose of assembling galvanic cells with different fluoride electrolytes was to check the consistency of the EMF data. For instance, the $\Delta_r G^\circ$ value at 950 K obtained from Eq. (8) was found to be -4.3 kJ mol^{-1} . This is in very good agreement with -3.6 kJ mol^{-1} obtained at four temperatures in the range 1223–1373 K. They derived the following expression for the standard Gibbs energy of formation, $\Delta_r G^\circ$ of one mole of SrCeO₃ from the constituent binary oxides SrO and CeO₂.

$$\Delta_{\rm r} G^{\circ}({\rm SrCeO_3}) \ ({\rm kJ\,mol^{-1}}) = 68.3 - 0.1068T \ ({\rm K})$$
(10)

Extrapolation of the expression Eq. (10) to 950 K gives a value of $(\Delta_r G^{\circ}) -33.1 \text{ kJ mol}^{-1}$ which is not in agreement with the values of $-4.3 \text{ and } -3.6 \text{ kJ mol}^{-1}$ obtained in the present study. Moreover, the entropy term $\Delta_r S^{\circ}$ in Eq. (10) is higher than the normally expected values of $6-10 \text{ J K}^{-1} \text{ mol}^{-1}$ for a solid–solid reaction. The $(\Delta_r G^{\circ})$ values from the cells (I) (Eq. (8)) and (II) (Eq. (9)) are compared with those of the values from cell (V) obtained by Gopalan and Virkar [7] in Fig. 3.

Computation of standard Gibbs energy of formation, $\Delta_{\rm f}G^{\circ}$, SrCeO₃ from Eq. (7) requires reliable Gibbs energy values for SrO(s) and CeO₂(s). Combining the auxiliary data for $\Delta_{\rm f}G^{\circ}$ SrO(s) and CeO₂(s) obtained from

Fig. 3. Comparison of $\Delta_r G^\circ$ of SrCeO₃(s) with literature data.

the literature [14] with the values $\Delta_{\rm r}G^{\circ}$ (SrCeO₃) from Eqs. (8) and (9), the following expressions were derived for the standard Gibbs energy of formation of SrCeO₃.

$$\Delta_{\rm f} G^{\circ}({\rm SrCeO_3}) \pm 14({\rm kJ\,mol^{-1}})$$

= -1706.6 + 0.3379*T* (K) (837–976 K) (11)

$$\Delta_{\rm f} G^{\circ}({\rm SrCeO_3}) \pm 14({\rm kJ\,mol^{-1}})$$

= -1697.4 + 0.3289*T* (K) (788–954 K) (12)

These results indicate that SrCeO₃ is only marginally more stable than its constituent oxides.

4.2. Gibbs energy data on SrCeO₃ from Cell (III)

The fluorine potential over the reference electrode $(CaO + CaF_2)$ is higher than that of the test electrode, $(SrCeO_3 + CeO_2 + SrF_2)$ in cell III. The half-cell reactions at the anode and the cathode are given as

$$SrCeO_{3}(s) + 2F^{-} \Rightarrow SrF_{2}(s) + CeO_{2}(s) + \frac{1}{2}O_{2}(g) + 2e^{-}$$
(13)

$$CaF_2(s) + \frac{1}{2}O_2(g) + 2e^- \Rightarrow CaO(s) + 2F^-$$
(14)

The overall cell reaction (with n = 2) is given by

$$CaF_{2}(s) + SrCeO_{3}(s) \Rightarrow SrF_{2}(s) + CeO_{2}(s) + CaO(s)$$
(15)

The standard Gibbs energy change, $\Delta_r G^{\circ}$ for the above reaction could be calculated from the EMF expression (3) and is given below.

$$\Delta_{\rm r} G^{\circ}(15) \pm 0.1 \ (\rm kJ \, mol^{-1})$$

= -29.1 + 0.0059*T* (K) (972–1142 K) (16)

Combining the above expression along with $\Delta_f G^\circ$ values of CaF₂ and SrF₂ compiled by Knacke et al. [15] CeO₂ by Kubaschewski and Alcock [14] and the assessed values of CaO from the literature [16], the following equation was derived.

$$\Delta_{\rm f} G^{\circ}({\rm SrCeO_3}) \pm 23 (\rm kJ\,mol^{-1}) = -1706.2 + 0.3157T \ (\rm K)$$
(17)

The expressions for the $\Delta_f G^{\circ}$ (SrCeO₃) thus obtained from the three cells are compared in Table 5 along with the values obtained by Cordfunke et al. [8] using calorimetric measurements. It could be seen from this table that the individual enthalpy and entropy terms are in excellent agreement among these three cells. At 950 K, the Gibbs energy values from cell I and II are in excellent agreement with each other. Even though the values obtained using cell (III) are in excellent agreement with that reported by Cordfunke et al. [8], these values are marginally more negative. The following average expression obtained from expressions (11), (12) and (17) is recommended for $\Delta_f G^{\circ}$ (SrCeO₃) over the temperature range 788–1142 K.

$$\Delta_{\rm f} G^{\circ}({\rm SrCeO_3}) \pm 17 (\rm kJ\,mol^{-1}) = -1703.4 + 0.3275T~(\rm K) \tag{18}$$

4.3. $\Delta_f H_{298}^{\circ}$ (SrCeO₃) by the third-law method

In order to assess the temperature dependent errors in the EMF measurements of cell (I) and Cell (III) and to verify if these values are consistent with the calorimetric data, it was necessary to carry out the third-law analysis. For this purpose, the values of free energy functions for SrCeO₃ in the range 700-1100 K tabulated by Cordfunke et al. [8] were taken. The standard entropy, S_{298}° of $SrCeO_3$ (131JK⁻¹mol⁻¹) was used for the calculation of the Gibbs energy function of SrCeO₃. These values of the Gibbs energy functions were then combined with the corresponding values for the elements, viz., Sr(s) from Ref. [17], Ce(s), and O₂(g) from Ref. [18] in order to derive the Gibbs energy function for SrCeO₃. The values thus obtained were combined with the values of $\Delta_r G^\circ$ calculated from each EMF value (Table 1) along with $\Delta_{\rm f}G^{\circ}$ of SrO and CeO₂ from the literature to derive

Table 5 Comparison of $\Delta_{\rm f} G^{\circ}$ (SrCeO₃) values obtained from different cells along with the $\Delta_{\rm f} H^{\circ}_{\rm osc}$ values from the literature

1 1	(5)			298		
Galvanic cells	$\Delta_{\rm f} G^{\circ} \ (\rm kJ \ mol^{-1}) = A + B \cdot T \ (\rm K)$		T range (K)	$\frac{\Delta_{\rm f}G^{\circ}~(950{\rm K})}{({\rm kJmol}^{-1})}$	$\frac{\Delta_{\rm f} H_{298}^{\circ}}{(\rm kJmol^{-1})}$	Reference
	A	В				
Cell I	-1706.6	0.3379	837–976	-1385.5	-1675.3 ± 10.8	This work
Cell II	-1697.4	0.3289	788–954	-1385.0	-	This work
Cell III	-1706.2	0.3157	972-1142	-1406.3	-1676.3 ± 12.8	This work
Average	-1703.4	0.3275	788-1142	-1392.2		This work
				-1405.6	-1687 ± 2.7	[8]
					-1737 ± 22	[7]
					-1685.6 ± 3.8	[19]

Fig. 4. Third-law treatment of the standard enthalpy of formation of $SrCeO_3(s)$ at 298.15K, from cells I and III.

 $\Delta_{\rm f} H_{298}^{\circ}$ of SrCeO₃. Similar exercise was done for cell (III) using $\Delta_{\rm f} G^{\circ}$ of CaO, CaF₂ and SrF₂ from the literature to derive $\Delta_{\rm f} H_{298}^{\circ}$ of SrCeO₃ at different experimental temperatures.

The third-law plots of $\Delta_{\rm f} H^{\circ}_{298}$ of SrCeO₃ derived from cells (I) and (III) are shown in Fig. 4. The mean value was found to be $-(1675.3 \pm 10.8)$ kJ mol⁻¹ from cell (I) and $-(1676.3 \pm 12.8)$ kJ mol⁻¹ from cell (III). The values of $\Delta_{\rm f} H^{\circ}_{298}$ show a weak dependence on temperature. In view of the small magnitude of this dependence (about 0.04 kJmol^{-1}) it is reasonable to assume that these temperature dependent errors will be well within the random errors in the measured values. These are found to be in fair agreement with the values viz., $-(1687 \pm 2.7)$ and $-(1685.6 \pm 3.8)$ kJmol⁻¹ reported by Cordfunke et al. [8] and Goudiakas et al. [19], respectively. These values are compared in Table 5 as well. However, the data obtained using the cell (II) were not analyzed using the third-law method, for it appeared to have significant temperature dependent errors.

4.4. Thermodynamic stability of Sr_2CeO_4

The EMF results from cell (IV) represented by Eq. (4), over the temperature range 805-1066 K are given in Table 4. The half-cell reactions are given as

$$SrO(s) + 2F^{-} \Rightarrow SrF_{2}(s) + \frac{1}{2}O_{2}(g) + 2e^{-}$$
 (19)

$$SrF_{2}(s) + SrCeO_{3}(s) + \frac{1}{2}O_{2}(g) + 2e^{-} \Rightarrow Sr_{2}CeO_{4}(s) + 2F^{-}$$
(20)

The overall cell reaction (with n = 2) could be represented by

$$SrCeO_3(s) + SrO(s) \Rightarrow Sr_2CeO_4(s)$$
 (21)

The standard Gibbs energy change, $\Delta_r G^{\circ}$ for the above reaction (21) calculated using the expression (4) is given below:

$$\Delta_{\rm r} G^{\circ}(21) \pm 0.2 (\rm kJ\,mol^{-1}) = -11.62 + 0.01057T \ (\rm K)$$
(22)

An expression for $\Delta_{\rm f}G^{\circ}$ of Sr₂CeO₄ was derived by combining the expressions (18), (22) and (21) along with the values for $\Delta_{\rm f}G^{\circ}$ (SrO) obtained from the literature [14].

$$\Delta_{\rm f} G^{\circ}({\rm Sr}_2 {\rm CeO}_4) \pm 21 (\rm kJ \, mol^{-1})$$

= -2307.1 + 0.4400T (K) (805–1066 K) (23)

An expression for the standard Gibbs energy of formation of Sr₂CeO₄ is reported in this study for the first time. A third-law analysis of the EMF results could not be carried out owing to the lack of Gibbs energy functions on Sr₂CeO₄. However, Ali et al. [10] have measured $\Delta_{\rm f} H_{298}^{\circ}$ of Sr₂CeO₄ by solution calorimetry. This value is found to be $-2280 \,\rm kJ \, mol^{-1}$ and is in good agreement with the second-law enthalpy value of $-2307 \,\rm kJ \, mol^{-1}$ at the mean experimental temperature of 936 K, obtained in the present study.

5. Conclusion

The standard Gibbs energy of reaction, $\Delta_r G^{\circ}$ from cells (I) and (II) reveals that SrCeO₃(s) is only marginally stable with respect to its constituent binary oxides in the temperature range amenable to fluoride electrolyte measurements. The $\Delta_f G^{\circ}$ (SrCeO₃(s)) values determined from three different cells using different fluoride electrolytes as well as different reference electrodes match reasonably well. In addition, the standard Gibbs energy of formation, $\Delta_f G^{\circ}$ (Sr₂CeO₄) was also determined for the first time by the fluoride EMF technique.

References

- V. Venugopal, Indian Assoc. Nucl. Chem. Allied Sci. (IANCAS) Bull. I (4) (2002) 19.
- [2] H.S. Kamath, A. Kumar, Indian Assoc. Nucl. Chem. Allied Sci. (IANCAS) Bull. I (4) (2002) 26.
- [3] H. Kleykamp, J. Nucl. Mater. 131 (1985) 221.
- [4] M.A. Mignanelli, P.E. Potter, J. Nucl. Mater. 118 (1983) 150.
- [5] JCPDS, International Centre for Diffraction Data, file Nos. 22-1422, 23-1412, 1999.
- [6] R. Saha, R. Babu, K. Nagarajan, C.K. Mathews, J. Nucl. Mater. 167 (1989) 271.
- [7] S. Gopalan, V. Virkar, J. Electrochem. Soc. 140 (1993) 1060.
- [8] E.H.P. Cordfunke, A.S. Booij, M.E. Huntelaar, J. Chem. Thermodyn. 30 (1998) 437.

- [9] S. Yamanaka, K. Kurosaki, T. Matsuda, S. Kobayashi, J. Alloys Compd. 352 (2003) 52.
- [10] M. Ali, S.R. Bharadwaj, D. Das, in: Proceedings of the 14th National Symposium on Thermal Analysis (THER-MANS 2004), M.S. University, Baroda, India, 2004, p. 162.
- [11] K. Ananthasivan, S. Anthonysamy, C. Sudha, A.L.E. Terrance, P.R. Vasudeva Rao, J. Nucl. Mater. 300 (2002) 217.
- [12] A.M. Azad, O.M. Sreedharan, J. Appl. Electrochem. 17 (1987) 949.
- [13] A.M. Azad, R. Sudha, O.M. Sreedharan, Thermochim. Acta 194 (1992) 129.
- [14] O. Kubaschewski, C.B. Alcock, Metallurgical Thermochemistry, 5th Ed., Pergamon, Oxford, 1983.

- [15] O. Knacke, O. Kubaschewski, K. Hesselmann (Eds.), Thermochemical Properties of Inorganic Substances, 2nd Ed., Springer-Verlag, Germany, 1991.
- [16] O.M. Sreedharan, C. Mallika, A Compilation of Gibbs Energy Data for 40 Metal Oxide Buffers, Report RRC – 69, 1984.
- [17] M.W. Chase, Jr., C.A. Davis, J. Downey, Jr., D.J. Frurip, R.A. McDonald, A.N. Syveud, JANAF Thermochemical Tables, 3rd Ed., 1985.
- [18] R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, D.D. Wagman, Selected Values of the Thermodynamic Properties of Elements, American Society for Metals, Metals Park, Ohio, 1973.
- [19] J. Goudiakas, R.G. Haire, J. Fuger, J. Chem. Thermodyn. 22 (1990) 577.